Optimizing Gabor Texture Features for Materials Recognition by Convolutional Neural Networks

نویسندگان

چکیده

In this paper, we present a novel technique that allows for customized Gabor texture features by leveraging deep learning neural networks. Our method involves using Convolutional Neural Network to refactor traditional, hand-designed filters on specific datasets. The refactored can be used in an off-the-shelf manner with the same computational cost but significantly improved accuracy material recognition. We demonstrate effectiveness of our approach reporting gain discriminatio different is particularly appealing situations where use entire CNN would inadequate, such as analyzing non-square images or performing segmentation tasks. Overall, provides powerful tool improving recognition tasks while retaining advantages handcrafted filters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Digit Recognition using Convolutional Neural Networks and Gabor filters

In this article, the task of classifying handwritten digits using a class of multilayer feedforward network called Convolutional Network is considered. A convolutional network has the advantage of extracting and using features information, improving the recognition of 2D shapes with a high degree of invariance to translation, scaling and other distortions. In this work, a novel type of convolut...

متن کامل

Wavelet Convolutional Neural Networks for Texture Classification

Texture classification is an important and challenging problem in many image processing applications. While convolutional neural networks (CNNs) achieved significant successes for image classification, texture classification remains a difficult problem since textures usually do not contain enough information regarding the shape of object. In image processing, texture classification has been tra...

متن کامل

Visualizing Features Learned by Convolutional Neural Networks

A pattern recognition pipeline consists of three stages: data pre-processing, feature extraction, and classification. Traditionally, most research effort is put into extracting appropriate features. With the advent of GPU-accelerated computing and Deep Learning, appropriate features can be discovered as part of the training process. Understanding these discovered features is important: we might...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Texture Synthesis Using Convolutional Neural Networks

Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Final program and proceedings

سال: 2023

ISSN: ['2166-9635', '2169-2629']

DOI: https://doi.org/10.2352/lim.2023.4.1.28